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Letters

Comments on “A New Finite-Difference
Time-Domain Formulation and its Equivalence
with the TLM Symmetrical Condensed Node”

M. Celuch-Marcysiak and W. K. Gwarek

In [1] the authors present a new formulation of the finite-difference
time-domain (FD-TD) method for Maxwell’s equations. They com-
pare this formulation (which we shall call “New FD-TD”) with other
existing FD-TD and TLM algorithms. They come to conclusions
which can be summarized in the following statements:

1. For the 2-D case the classical FD-TD formulation is not
equivalent to the classical TL.M shunt-node or series-node for-
mulation. New FD-TD is equivalent to the classical TLM shunt-
node algorithm. Shunt-node TLM or its equivalent—new FD-
TD provide more accurate description of the electromagnetic
field than classical FD-TD. Consequently, they produce the
analyzed circuit parameters with better accuracy (for example
eigenvalues presented in Table I of [1]).

2. Still considering the 2-D case, the TLM and new FD-TD
calculations converge more rapidly to the final solution when
the number of iterations increases, in comparison with classical
FD-TD (see Fig. 6 in [1]).

3. These advantages of TLM and new FD-TD over classical
FD-TD result from the fact that they automatically provide
“energy conservation within cubic cells, thus generating a stable
nondissipative solution”™ while “energy conservation must be
explicitly enforced in a FD-TD scheme to ensure it.”

4. The other reason for better accuracy of TLM and new FD-TD
in comparison with classical FD-TD is that “both electric and
magnetic field components are defined at the cell centers and
at mid-points between adjacent cells.”

5. The new FD-TD algorithm extended to three dimensions be-
comes fully equivalent to Symmetrical Condensed Node TLM.
When compared with the classical three—dimensional FD-TD
formulation, new FD-TD and SCN-TLM retain the advantage
of automatically conserving energy and of better field resolution
(like in 2-D), and on these grounds better accuracy is also
expected.

Neither of the statements 1-4 is entirely correct and statement
5 contains misleading interpretations of the differences between the
SCN TLM node and the classical Yee’s mesh. We will discuss them
in detail.

I. COMMENTS ON STATEMENT 1

The classical 2-D FD-TD and the shunt node TLM are formally
equivalent in application to the analysis of circuits of arbitrary
complexity. It means that no extra accuracy of calculation of circuit
parameters can result from substituting the FD-TD wave simulation
by the TLM wave simulation. This is the essence of the Equivalence
Theorem presented in [4] and proved in [5]. To avoid confusion
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in further discussion, let us here clearly specify the conditions for
this equivalence. A fundamental TLM mesh is described by four
quantities (e.g., four incident pulses) changing after each iteration. Let
us call them W, with k = 1,2, 3,4. In a similar way a fundamental
FD-TD mesh is described by three quantities (one nodal voltage
and two branch currents) which we will call U’; with I = 1,2,3.
We characterize the analyzed circuit by a transmittance operator T'
relating an input quantity Vi, (¢) and an output quantity Vous(t).

L;ut(t) — T[‘/;n(t)] (1)

The operator T is obtained by FD-TD calculations (we will call it
T) or by TLM calculations (we will call it Tt). The Equivalence
Theorem states that if Vi, and V¢ are chosen in such a way that they
can be expressed as linear combination of the quantities 1% and also
as linear combinations of I’;, then the operators Ty and T} are nearly
identical, that is they differ only by the computer round off errors.
For both methods these errors are very small and usually several
orders of magnitude below the acceptable errors of analysis. Thus,
contrary to the suggestions expressed in [1], the differences between
FD-TD and TLM results presented in Table I of the paper cannot be
attributed to the differences in the model of propagation. We would
rather attribute them to the differences in excitation conditions, as
pointed out in our further comments.

For completeness of our discussion we must consider that TLM
contains some information not explicitly available in classical FD-
TD. This additional set of information consists of nodal currents
and branch voltages. Therefore while all the quantities U'; can be
expressed as linear combinations of Wi, not all the Wy can be
expressed as linear combinations of U;. Thus a question may arise
about expressing (1) when V5, and Vi, are quantities available in
TLM but not explicitly available in FD-TD. It can be shown [4], [5]
that we can obtain these quantities in the classical FD-TD by adding
few simple operations. In particular, the repeated space averaging
of standard FD-TD nodal voltages produces branch voltages fully
equivalent to TLM branch voltages. In fact, governing (14)—-(17) in
paper [1] can also be used as generators of auxiliary information.
The relative advantage of the repeated space averaging of [4], [5]
is that it can be easily applied locally, for example only in a single
mesh at input and a single mesh at output, just where we actually
need to decompose Vi, and Vo, into quantities used by the simulation
algorithm. There is no need to add any operations in all other meshes.

In view of the Equivalence Theorem and its consequences men-
tioned above, it is not possible for the new FD-TD algorithm to be
equivalent to classical TLM and not equivalent to classical FD-TD.
We find it straightforward to show that—contrary to the conclusions
of [1]—all three algorithms are equivalent, although indeed each uses
a different number of variables to describe the electromagnetic field
over a fundamental mesh and, consequently, a different number of
equations to update the field after each iteration.

II. COMMENTS ON STATEMENT 2

To show that the TLM algorithm converges more quickly than the
FD-TD algorithm the authors of [1] present an example of eigenvalue
calculations (Fig. 6) in which after 200-300 iterations the error in FD-
TD is of the order of 5% of the final value while in TLM—of the
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order of 1%. Now, an important aspect of the Equivalence Theorem
[4], [5] is that it does not only state the equivalence of 77 and T}
operators which are obtained as final results of the FD-TD and TLM
algorithms, respectively but also the equivalence of corresponding
field components at each individual mesh and at each individual
iteration. Thus at any location in the circuit and at any time instant
the values of a pair of corresponding FD-TD and TLM functions
(e.g., nodal voltages) differ only by the computer round off errors.
this means in particular that FD-TD and TLM have to converge
along the same path. In other words, the differences of convergence
properties such as those exhibited in Fig. 6 of [1] can by no means
be attributed to the mere change from the TLM to FD-TD simulation
algorithm.

Obviously, the validity of our above conclusion requires the use
of equivalent models of circuit boundaries and of excitation. It can
be shown [4], [5] that any models of space discontinuities or of exci-
tation functions existing in either the TLM or FD-TD notation—can
be equivalently transformed into the other notation. Therefore the
requirement of equivalent excitation and boundary conditions can
always be satisfied, leading to the meaningful comparison of the
actual numerical properties of TLM and FD-TD, which then clearly
prove equivalent. This we have verified for a great variety of circuits
of most sophisticated shapes, filling and excitation. On the other hand,
we have found that the speed of convergence strongly depends on
several other factors, such as:

* A choice of the function f(w) to be investigated in the search of
eigenvalues; some functions produce maxima and some of them
minima for eigenvalues and the extrema are not equally sharp;

* A choice of the positioning of input and output meshes to define
flw);

» A choice of the source of excitation [6].

Not knowing the exact conditions under which the calculations
of Fig. 6 have been performed we cannot repeat them exactly.
However, using the grid presented in Fig. 5(b) of [1] we have
performed eigenvalue calculations using a classical Yee’s FD-TD
mesh and we have obtained the transient response error falling below
0.3% after 150 iterations. If this is still not convincing, we would
appreciate sending us the exact description of the conditions under
which the calculations of Fig. 6 have been performed and we will
show how to make classical FD-TD perform like TLM, or vice
versa.

1II. COMMENTS ON STATEMENT 3

An exact mathematical way of verifying whether a numerical
scheme conserves energy or whether it is dissipative—consists in
analyzing its dispersion relations [10]. If for all real values of a
propagation constant the numerical scheme gives purely real values of
frequency, then the conservation of energy is guaranteed. Dispersion
analysis of the FD-TD algorithm is a straightforward task and
has been performed by several authors, e.g.. {7]. It is easily seen
that classical FD-TD naturally produces stable and nondissipative
solutions. This in fact is a direct consequence of using central
finite differences in both space and time [10]. Therefore contrary
to Statement 3., explicit enforcement of energy conservation into
FD-TD is unnecessary and redundant in terms of overall accuracy
of modeling the propagation space. This justifies in particular why
all three algorithms: classical FD-TD, TLM and New FD-TD (as
presented in [1] for the 2-D case) are formally equivalent, although
only the latter two explicitly incorporate the energy criterion. Clearly,
explicit enforcement into a numerical scheme of a condition which
is inherent in this scheme anyway—cannot be expected to improve
the accuracy of calculations.

IV. COMMENTS ON STATEMENT 4

Formal equivalence of classical FD-TD, TLM and new FD-TD
means that contrary to the suggestions made in [1], the calculation
of more field components by the latter two algorithms and the
positioning of electric and magnetic field components at common
locations do not improve the overall accuracy of the analysis.
Essentially, the accuracy is determined by the underlying scheme
of numerical integration in space and time. It is true that the
positioning of field components to some extend reveals the scheme of
integration—but by no means determines it. This will be exemplified
in our further comments.

V. COMMENTS ON STATEMENT 5

In 3D, the authors of [1] suggest that the differences between the
condensed node models and the classical Yee’s mesh result simply
from the different number and positioning of the calculated field
components and from the fact that the energy conservation criterion
is included explicitly in the condensed node algorithms. Like in 2D,
we claim that such an interpretation is invalid.

Paradoxically, the New FD-TD of [1] in itself provides a very
good example to support our claim. The authors of [1] are right
in pointing out that their new FD-TD in 3D is equivalent to the
Symmetrical Condensed Node (SCN) formulation of TLM. But
because of this equivalence their 3-D algorithm applied to the case
of 2-D propagation must be different from the previously discussed
new 2-D FD-TD (which is equivalent to the conventional shunt node
TLM). We shall show this difference in a formal way.

The New 2-D FD-TD introduced in Section II-A of [1] (which we
will from now on call “New 2-D FD-TD Type A”), is an equivalent
of a classical shunt node TLM formulation, which in vacuum can be
described by the following scattering matrix [9]:
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Now we consider the New 3-D FD-TD introduced in Section II-
B of [1] and reduce it to the two dimensional wave propagation.
What we obtain is a different 2-D version which we will call New
2-D FD-TD Type B. The version B is equivalent to a 2-D version
of the Symmetrical Condensed TLM node which in vacuum can be
characterized by a pair of scattering matrices:
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The most important consequence of the additional time delay pro-
duced by (3) with respect to (2) is the well known effect of zero
dispersion in the axial direction of the SCN modeling.

Let us now get a closer look at the New FD-TD algorithms of
Type A and Type B. They use the same number of field components
situated in the same way. They also use the same criterion of energy
conservation (see (10) ... (12) and (29) ... (32)). And yet the
algorithm of Type A produces results identical to the classical Yee’s
FD-TD while the algorithm of Type B clearly has different propetties,
including zero dispersion for axial propagation. The authors of [1]
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have neglected to pay attention to this fundamental discrepancy
between their two algorithms.

Let us briefly point out that the only reason for this discrepancy
consists in the numerical value of nodal inductance L(L = mi in
Type A and 2L = mi in Type B) which effectually determines the
scheme of numerical integration. In [1] the two different values of L
are used without any discussion or interpretation.

VI. CONCLUSIONS

On the base of the discussion presented above let us now formulate
some general conclusions;
1. The FD-TD and TLM algorithms which have been reported up
to now can be divided into two groups:
Group A of expanded modeling which includes:

Classical Yee’s FD-TD,

Classical TLM shunt or series node in 2-D;
Expanded Node 3-D TLM;

Spatial Network Method;

New 2-D FD-TD of [1] which we call “type A”;
Extended FD-TD of [5].

mo a0 T

Group B of condensed modeling which includes:

a.  Symmetrical Condensed TLM [2];
b. New 3-D FD-TD of [1];
¢.  New 2-D FD-TD of [1] called “Type B” in this paper.

Within each of the groups all the algorithms provide the
same accuracy for analyzing circuits of any complexity, with
any boundary conditions and any excitation. However, the
algorithm significantly differ in terms of the computer effort
required to obtain the solution.

2. The properties of the algorithms of Group A are very well
investigated. This cannot be said about the properties of the
algorithms of Group B. While they generally give a smaller
frequency error [3)], they are also prone to some types of
parasitic solutions [8]. Furthermore, the Group B algorithms
experience a more severe efficiency bound than the Group A
algorithms, that is, for any particular problem the most effective
algorithm from Group B requires more computer resources than
the most effective algorithm from Group A.
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Reply to Comments on “A New Finite-Difference
Time-Domain Formulation and its Equivalence
with the TLM Symmetrical Condensed Node”

Zhizhang Chen, Michel M. Ney and Wolfgang J. R. Hoefer

The above comments on Our paper give us a welcome opportunity
to clarify some of the points raised by Celuch-Marcysiak and Gwarek.

These comments begin with five statements which Celuch-
Marcysiak and Gwarek refer to as our conclusions. However, we
would like to remind the reader that these are clearly conclusions
attributed to us by Celuch-Marcysiak and Gwarek. Our own
conclusions are, of course, those in our paper [1]. Nevertheless, the
five statements by Celuch-Marcysiak and Gwarek are good starting
points for a discussion. We will therefore deal with them point
by point. In their comments, Celuch-Marcysiak and Gwarek refer
repeatedly to an equivalence theorem which is yet to be published
[2]. We are therefore not in a position to comment specifically on
statements made by the authors based on that paper. Nevertheless,
we will address the conclusions drawn by the authors regarding our
findings.

I. COMMENT ON STATEMENT 1

The FD-TD scheme described in [3] by Celuch-Marcysiak and
Gwarek uses an average procedure on the branch voltages (see
Eq. (9) in [3]). From their equivalence theorem [2] they conclude
that the operators are “nearly” identical. Although the issue of
equivalence between Yee’s scheme and 2-D TLM was not addressed
explicitly in our paper [1], we agree that, in free space, the 2-
D TLM node algorithm can indeed be made equivalent to Yee’'s
algorithm (at the limit of the stability criterion) by considering the
branch current (TM-case) half-way between the nodes and taking
the branch voltages at the same location as redundant quantities.
In this case, both algorithms are equivalent. Unfortunately, this
equivalence breaks down when boundaries, interfaces and sources
(all necessary for practical modeling) are introduced. As a result,
some additional operations on the classical Yee’s scheme are needed
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to ensure mathematical equivalence with the 2-D TLM. This point has
already been explained by Johns in his reply [4]. In their paper [3],
Celuch-Marcysiak and Gwarek also mentioned on p. 202 that formal
equivalence requires the repeated space (and, in fact, time) averaging
added to the classical Yee’s scheme. The objective in [1] was to
establish new FD-TD formulations which are exactly equivalent to
the 2-D TLM shunt node and to the 3-D TLM condensed node,
respectively, for any situation and in ail respects.

II. COMMENT ON STATEMENT 2

We acknowledge that different excitations will produce different
time-domain output and, therefore, different spectra. However, we
think that the statement that if the transient response is falling below
0.3% (of the maximum value, we suppose), the resonant frequency
is accurate within the same percentage after 150 iterations is not
conclusive. The truncation error that shifts the maxima corresponding
to resonant frequencies in the frequency domain must be taken
into account. Therefore, a transient response close to zero is not a
sufficient condition to ensure that the resonant frequency is obtained
with good accuracy. We would be interested in the Fourier transform
spectrum obtained by Celuch-Marcysiak and Gwarek to ascertain
their conclusion. In addition, the structure cannot, in general, be
excited in the same way when using TLM or classical Yee’s scheme.
For instance, in the TLM model the node at the center of the structure
of Fig. 6 in [1] is excited by an impulsive branch voltage and zero
currents while this cannot be done in the classical Yee’s scheme. This
may cause differences in the time-response but cannot entirely explain
the difference in the convergence behavior. Qur hypothesis, as men-
tioned in [1], is that explicit enforcement of the energy conservation
in the new FD-TD makes the new algorithm numerically robust and
attenuates the numerical noise during simulations, especially in the
case of a relatively coarse mesh as used in our example. However,
the point raised by Celuch-Marcysiak and Gwarek is noteworthy,
and more study is needed to clearly identify the exact reasons for the
difference in convergence behavior of the schemes.

IIT. COMMENT ON STATEMENT 3

There is a fundamental difference between the classical Yee’s
scheme and the 2-D TLM algorithm. The former approximates
Maxwell’s equations in discrete form by using difference operators
which, inherently, enhance numerical noise. As a result, if Maxwell’s
equations implicitly satisfy the energy conservation principle, a
discrete form such as Yee’s scheme will only approximately satisfy
it. On the other hand, TLM and the new FD-TD scheme proposed
in [1] compute the new field values using a scattering process which
explicitly enforces energy conservation. The behavior of the TLM
simulation suggests that explicit enforcement of energy conservation
leads to a faster convergence. This is consistent with the well-known
use of redundancy in communications to reduce the error rate due
to noise.

IV. COMMENT ON STATEMENT 4

We still maintain that the presence of more field components allows
a more accurate description of the boundaries and excitation. We refer
again to the reply by Johns [4] along these lines.

V. COMMENT ON STATEMENT 5

It is not clear to us what claim is brought forward by Celuch-
Marcysiak and Gwarek. While we suggested in our paper [1] that
the improved convergence behavior observed in the 2-D TLM and
the new 2-D FD-TD scheme may be due to the explicit enforce-
ment of energy conservation and conservation of all tangential field

components, we never claimed that this was the reason for the zero
dispersion along the main axes in 3-D condensed node algorithms.
Nor did we neglect to pay attention to this fundamental difference
between our two algorithms. It is simply a well-known fact which
our research group has already analyzed in great detail [5], [6].
The explanation given by Celuch-Marcysiak and Gwarek in their
comments thus stands entirely on its own merits. We have never
made any statement to the contrary.

We acknowledge the new type of 2-D TLM node (referred to as
type B) proposed by the authors, which is, as mentioned above,
a reduction of the 3-D TLM condensed node and whose origin,
surprisingly, is attributed to us by the authors. We acknowledge
the expected nondispersive character in the axial direction of the
node governed by equation (3) of their comments, but have some
reservations regarding the claim that this algorithm has the same
explicit energy conservation criterion as the 2-D TLM or ED-TD of
[1] (referred to as type A). The authors failed to notice that their
new algorithm (3) requires two time steps for updating the field
values. On the other hand, the 2-D algorithms presented in [1] state
explicitly that energy emerging from the node for new field updates
is equal to the energy that entered it at the previous time step only.
The new 2-D node which the authors are proposing is certainly worth
investigating, and it would be interesting to compare it with the 2-
D nodes presented in [1] or with Yee’s scheme. For instance, even
though no dispersion occurs in the axial direction, the node may still
exhibit some dispersion along other directions.

V1. CONCLUSIONS

1. We do not agree with the classification of the various time-
domain schemes presented by Celuch-Marcysiak and Gwarek
in their conclusion. For instance, the term “expanded node”
designates, according to the generally accepted definition, a
node in which the field components are defined at different
locations within the node. The 2-D TLM shunt node and the
2-D FD-TD node type A do not belong to that category. All
field components are computed exactly at the same location,
which is not the case in the classical Yee’s scheme.

2. Celuch-Marcysiak and Gwarek point out that the algorithms of
Group A have different computer expenditures. How., then, can
they be formally equivalent?

3. The properties of the node proposed by Celuch-Marcysiak and
Gwarek (called type B) remains to be investigated. The new 3-D
FD-TD scheme described in [1] has exactly the same properties
as the 3-D TLM condensed node whose properties, to the
contrary of the authors claim, have been thoroughly studied (see
for instance [5]-[7]). We agree that spurious mode solutions
arise in the group B nodes, but they are also present in the
algorithms of group A. These are inherent to the space and time
discretization process and have noticeable effects when active
circuits and absorbing boundaries are implemented. Again,
due to the mathematical difference of the various algorithms,
spurious modes have different properties and are excited in
different ways. While some algorithms of group B require more
computer storage. their faster convergence makes their CPU
time requirement comparable. Finally, explicit enforcement of
energy conservation ensures long term numerical stability and
convergence.
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Comments on “Josephson Effect
Gain and Noise in SIS Mixers”

Daniel G. Jablonski

In their recent article [1]. Wengler et al. report their observations
and conclusions concerning the effects of Josephson currents on the
microwave performance of superconductor-insulator-superconductor
tunnel junction devices. I would like to caution that the authors
seem poised to rediscover, the hard way, many lessons learned by
researchers during the 1970s concerning the use of Josephson devices.

First, Wengler et al. do not cite any references published prior to
1982. As a result, they make no mention of a considerable body of
published work relevant to their current research. In particular, there is
no indication that the authors have reviewed early work in the devel-
opment of Josephson effect mixers [2] and parametric amplifiers [3]
built using point-contact and constriction microbridge devices. Point
contacts and microbridges were popular because of the difficulties
at the time associated with making reliable tunnel junctions, now
known as S-I-S devices. Unlike S-I-S devices, point contacts and
microbridges have negligible shunt capacitance and do not generally
exhibit the quasiparticle, or photon-assisted tunneling steps exploited
by S-I-S devices. Users of point contacts and microbridges instead
relied on microwave modulation of the Josephson currents within the
devices. These currents give rise to the Shapiro steps discussed by
Wengler and his coauthors.

For the most part, it was eventually found that microwave ap-
plications of Josephson tunneling in point contacts, microbridges,
and tunnel junctions were cxtremely noisy, at least by cryogenic
standards. Furthermore, the application of standard microwave theory
led to some surprises, particularly with regard to the problem of
defining the noise temperature of a Josephson parametric amplifier
[4]. It turns out that the gain of such an amplifier depends on the noise
spectrum of the input signal. This makes traditional measurements of
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noise temperature inappropriate. Even though Wengler et al. are not
observing this mode of operation, it would be wise for them to review
the relevant literature, particularly with regard to a problem known
as “noise rise.” Related to this is the work of Kautz, his colleagues,
and others on chaos in Josephson junctions [5].

With respect to their work on S-I-S devices, the authors make
no mention of the work of Henneberger and myself on the effects
of Josephson currents on the performance of S-I-S devices [6]. If
nothing else, this work will make one aware of the many potential
difficulties that arise when Josephson steps and quasiparticle steps
interact in high frequency. low capacitance devices.

Finally, it should be emphasized that suppressing the Josephson
currents is not the same as eliminating the Josephson currents. Even
when external Josephson currents are suppressed with a magnetic
field, circulating Josephson currents still flow within the S-I-S device.
The results of Wengler ef al. suggest that these circulating currents
may significantly degrade the measured signal to noise performance.
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Reply to Comments on “Josephson
Effect Gain and Noise in SIS Mixers”

Michael J. Wengler

In the above paper' we should have placed our work in the context
of Josephson mixer work done before 1982, This omission leads to
Jablonski’s caution. I am pleased to reassure that we are in no danger
of rediscovering anything. The earlier work all used point contact
Junctions with low capacitance and with nonhysteretic current-voltage
(IV) curves which fit the resistively shunted Josephson junction (RSJ)
circuit model [1], [2]. Our work uses planar SIS diodes with higher
capacitance and with completely hysteretic IV’s which are not even
similar to the RSJ model predictions.
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