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Letters

Comments on “A New Finite-Difference

Time-Domain Formulation and its Equivalence

with the TLM Symmetrical Condensed Node”

M. Celuch-Marcysiak amd W. K. Gwarek

In [1] the authors present a new formulation of the finite-difference

time-domain (FD-TD) method for Maxwell’s equations. They com-

pare this formulation (which we shall call “New FD-TD”) with other

existing FD-TD and TLM algorithms. They come to conclusions

which can be summarized in the following statements:

1.

2.

3.

4.

5.

For the 2-D case the classical FD-TD formulation is not

equivalent to the classical TLM shunt-node or series-node for-

mulation. New FD-TD is equivalent to the classical TLM shunt-

node algorithm. Shunt-node TLM or its equivalent—new FD-

TD provide more accurate description of the electromagnetic

field than classical FD-TD. Consequently, they produce the

analyzed circuit parameters with better accuracy (for example

eigenvalues presented in Table I of [l]).

Still considering the 2-D case, the TLM and new FD-TD

calculations converge more rapidly to the final solution when

the number of iterations increases, in comparison with classical

FD-TD (see Fig. 6 in [1]).

These advantages of TLM and new FD-TD over classical

FD-TD result from the fact that they automatically provide

“energy conservation within cubic cells, thus generating a stable

nondissipative solution” while “energy conservation must be

explicitly enforced in a FD-TD scheme to ensure it.”

The other reason for better accuracy of TLM and new FD-TD

in comparison with classical FD-TD is that “both electric and

magnetic field components are defined at the cell centers and

at mid-points between adjacent cells.”

The new FD-TD algorithm extended to three dimensions be-

comes fully equivalent to Symmetrical Condensed Node TLM.

When compared with the classical three-dimensional FD-TD

formulation, new FD-TD and SCN-TLM retain the advantage

of automatically conserving energy and of better field resolution

(like in 2-D), and on these grounds better accuracy is also

expected.

Neither of the statements 14 is entirely correct and statement

5 contains misleading interpretations of the differences between the

SCN TLM node and the classical Yee’s mesh. We will discuss them

in detail.

I. COMMENTS ON STATEMENT 1

The classical 2-D FD-TD and the shunt node TLM are formally

equivalent in application to the analysis of circuits of arbitrary

complexity. It means that no extra accuracy of calculation of circuit

parameters can result from substituting the FD-TD wave simulation

by the TLM wave simulation. This is the essence of the Equivalence

Theorem presented in [4] and proved in [5]. To avoid confusion
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in further discussion, let us here clearly specify the conditions for

this equivalence. A fundamental TLM mesh is described by four

quantities (e.g., four incident pulses) changing after each iteration. Let

us call them Wk with k = 1,2,3,4. In a similar way a fundamental

FD-TD mesh is described by three quantities (one nodal voltage

and two branch currents) which we will call UI with 1 = 1,2,3.

We characterize the analyzed circuit by a transmittance operator T
relating an input quantity }L (t) and an output quantity Vht (t ).

(1)

The operator T is obtained by FD-TD calculations (we will call it

Tf ) or by TLM calculations (we will call it T,). The Equivalence

Theorem states that if M. and ~o.~ are chosen in such a way that they

can be expressed as linear combination of the quantities lV~ and also

as linear combinations of U1, then the operators Tf and Tt are nearly

identical, that is they differ only by the computer round off errors.

For both methods these errors are very small and usually several

orders of magnitude below the acceptable errors of analysis. Thus,

contrary to the suggestions expressed in [1], the differences between

FD-TD and TLM results presented in Table I of the paper cannot be

attributed to the differences in the model of propagation. We would

rather attribute them to the differences in excitation conditions, as

pointed out in our further comments.

For completeness of our discussion we must consider that TLM

contains some information not explicitly available in classical FD-

TD. This additional set of information consists of nodal currents

and branch voltages. Therefore while all the quantities LTZcan be

expressed as linear combinations of 1$~~, not all the Wk can be

expressed as linear combinations of UJ. Thus a question may arise

about expressing (1) when Ii.t and VL are quantities available in

TLM but not explicitly available in FD-TD. It can be shown [4], [5]

that we can obtain these quantities in the classical FD-TD by adding

few simple operations. In particular, the repeated space averaging

of standard FD-TD nodal voltages produces branch voltages fully

equivrdent to TLM branch voltages. In fact, governing ( 14)–( 17) in

paper [1] can also be used as generators of auxiliary information.

The relative advantage of the repeated space averaging of [4], [5]

is that it can be easily applied locally, for example only in a single

mesh at input and a single mesh at output, just where we actually

need to decompose t~m and V..t into quantities used by the simulation

algorithm. There is no need to add any operations in all other meshes.

In view of the Equivalence Theorem and its consequences men-

tioned above, it is not possible for the new FD-TD algorithm to be

equivalent to classical TLM and not equivalent to classical FD-TD.

We find it straightforward to show that<ontrary to the conclusions

of [1 ]—all three algorithms are equivalent, although indeed each uses

a different number of variables to describe the electromagnetic field

over a fundamental mesh and, consequently, a different number of

equations to update the field after each iteration.

II. COMMENTS ON STATEMENT 2

To show that the TLM algorithm converges more quickly than the

FD-TD algorithm the authors of [ 1] present an example of eigenvalue

calculations (Fig. 6) in which after 200-300 iterations the error in FD-

TD is of the order of 5% of the final value while in TLM+f the
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order of lYo. Now, unimportant aspect of the Equivalence Theorem

[4], [5] isthatit does notonly state theequivalenceof Tf and T,

operators which are obtained as final results of the FD-TD and TLM

algorithms, respectively but also the equivalence of corresponding

field components at each individual mesh and at each individual

iteration. Thus at any location in the circuit and at any time instant

the values of a pair of corresponding FD-TD and TLM functions

(e.g., nodal voltages) differ only by the computer round off errors.

this means in particular that FD-TD and TLM have to converge

along the same path. In other words, the differences of convergence

properties such asthose exhibited in Fig. 6of [1] can by no means

be attributed to the mere change from the TLM to FD-TD simulation

algorithm.

Obviously, the validity of our above conclusion requires the use

of equivalent models of circuit boundaries and of excitation. It can

be shown [4], [5] that any models of space discontinuities or of exci-

tation functions existing in either the TLM or FE-TD notation-an

be equivalently transformed into the other notation. Therefore the

requirement of equivalent excitation and boundary conditions can

always be satisfied, leading to the meaningful comparison of the

actual numerical properties of TLM and FD-TD, which then clearly

prove equivalent. This we have verified for a great variety of circuits

of most sophisticated shapes, filling and excitation. On the other hand,

we have found that the speed of convergence strongly depends on

several other factors, such as:

● A choice of the function f(w ) to be investigated in the search of

eigenvalues; some functions produce maxima and some of them

minima for eigenvalues and the extrema are not equally sharp;

● A choice of the positioning of input and output meshes to define

f(w);

● A choice of the source of excitation [6].

Not knowing the exact conditions under which the calculations

of Fig. 6 have been performed we cannot repeat them exactly.

However, using the grid presented in Fig. 5(b) of [1] we have

performed eigenvalue calculations using a classical Yee’s FD-TD

mesh and we have obtained the transient response error falling below

0.3% after 150 iterations. If this is still not convincing, we would

appreciate sending us the exact description of the conditions under

which the calculations of Fig. 6 have been performed and we will

show how to make classical FD-TD perform like TLM, or vice

versa.

III. COMMENTS ON STATEMENT 3

An exact mathematical way of verifying whether a numerical

scheme conserves energy or whether it is di ssipative<onsists in

analyzing its dispersion relations [10]. If for all real values of a

propagation constant the numerical scheme gives purely real values of

frequency, then the conservation of energy is guaranteed, Dispersion

analysis of the FD-TD algorithm is a straightforward task and

has been performed by several authors, e.g.. [7]. It is easily seen

that classical FD-TD naturally produces stable and nondissipative

solutions. This in fact is a direct consequence of using central

finite differences in both space and time [10]. Therefore contrary

to Statement 3., explicit enforcement of energy conservation into

FD-TD is unnecess~ and redundant in terms of overall accuracy

of modeling the propagation space. This justifies in particular why

all three algorithms: classical FD-TD, TLM and New FD-TD (as

presented in [1] for the 2-D case) are formally equivalent, although

only the latter two explicitly incorporate the energy criterion. Clearly,

explicit enforcement into a numerical scheme of a condition which

is inherent in this scheme anyway~annot be expected to improve

the accuracy of calculations.

IV. COMMENTS ON STATEMENT 4

Formal equivalence of classical FD-TD, TLM and new FD-TD

means that contrary to the suggestions made in [1], the calculation

of more field components by the latter two algorithms and the

positioning of electric and magnetic field components at common

locations do not improve the overall accuracy of the analysis.

Essentially, the accuracy is determined by the underlying scheme

of numerical integration in space and time. It is true that the

positioning of field components to some extend reveals the scheme of

integration—but by no means determines it. This will be exemplified

in our further comments.

V. COMMENTS ON STATEMENT 5

In 3D, the authors of [1] suggest that the differences between the

condensed node models and the classical Yee’s mesh result simply

from the different number and positioning of the calculated field

components and from the fact that the energy conservation criterion

is included explicitly in the condensed node algorithms. Like in 2D,

we claim that such an interpretation is invalid.

Paradoxically, the New FD-TD of [1] in itself provides a very

good example to support our claim. The authors of [1] are right

in pointing out that their new FD-TD in 3D is equivalent to the

Symmetrical Condensed Node (SCN) formulation of TLM. But

because of this equivalence their 3-D algorithm applied to the case

of 2-D propagation must be different from the previously discussed

new 2-D FD-TD (which is equivalent to the conventional shunt node

TLM). We shall show this difference in a formal way.

The New 2-D FD-TD introduced in Section II-A of [1] (which we

will from now on call “New 2-D FD-TD Type A“), is an equivalent

of a classical shunt node TLM formulation, which in vacuum can be

described by the following scattering matrix [9]:

Now

B of

!
VI+ ‘0
b;+
V3+ (2)

V-4+

we consider the New 3-D FD-TD introduced in Section II-

[1] and reduce it to the two dimensional wave propagation.

What we obtain is a different 2-D version which we will call New

2-D FD-TD Type B. The version B is equivalent to a 2-D version

of the Symmetrical Condensed TLM node which in vacuum can be

characterized by a pair of scattering matrices:

[1’O+A’=”2E:!!l”[l’O
[1
–1 o 1 0 to–Af

0–101
+ 1/2 ~

o–lo”
(3)

01 0 –1

The most important consequence of the additional time delay pro-

duced by (3i with respect “to (2) is the well known effect of zero

dispersion in the axial direction of the SCN modeling.
Let us now get a closer look at the New FD-TD algorithms of

Type A and Type B. They use the same number of field components

situated in the same way. They also use the same criterion of energy

conservation (see (10) . . . (12) and (29) . . . (32)). And yet the

algorithm of Type A produces results identical to the classical Yee’s

FD-TD while the rdgorithm of Type B clearly has different properties,

including zero dispersion for axial propagation. The authors of [1]
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have neglected to pay attention to this fundamental discrepancy

between their two algorithms.

Let us briefly point out that the only reason for this discrepancy

consists in the numerical value of nodal inductance L(L = rni in

Type A and 2L = mi in Type B) which effectually determines the

scheme ofnumerical integration. In [1] thetwodifferent values of L

are used without any discussion or interpretation.

VI. CONCLUSIONS

On the base of the discussion presented above let us now formulate

some general conclusions:

1,

2,

[1]

[2]

[3]

[4]

[5]

[6]

The FD-TD and TLM algorithms which have been reported up

to now can be divided into two groups:

Group A of expanded modeling which includes:

a. Classical Yee’s FD-TD,

b. Classical TLM shunt or series node in 2-D;

c. Expanded Node 3-D TLM;

d. Spatial Network Method

e. New2-DFD-TDof [1] which wecalI’’type A”;

f. Extended FD-TD of [5].

Group B of condensed modeling which includes:

a. Symmetrical Condensed TLM [2];

b. New 3-D FD-TD of [1];

c. New 2-D FD-TD of [1] called “Type B“ in this paper.

Within each of the groups all the algorithms provide the

same accuracy for analyzing circuits of any complexity, with

any boundary conditions and any excitation. However, the

algorithm significantly differ in terms of the computer effort

required to obtain the solution.

The properties of the algorithms of Group A are very well

investigated. This cannot be said about the properties of the

algorithms of Group B. While they generally give a smaller

frequency error [3], they are also prone to some types of

parasitic solutions [8]. Furthermore, the Group B algorithms

experience a more severe efficiency bound than the Group A

algorithms, that is, for any particular problem the most effective

algorithm from Group B requires more computer resources than

the most effective algorithm from Group A.
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Reply to Comments on “A New Finite-Difference

Time-Domain Formulation and its Equivalence

with the TLM Symmetrical Condensed Node”

Lhizhang Chen, Michel M. Ney and Wolfgang J. R. Hoefer

The above comments on our paper give us a welcome opportunity

to clarify some of the points raised by Celuch-Marcysiak and Gwarek.

These comments begin with five statements which Celuch-

Marcysiak and Gwarek refer to as our conclusions. However, we

would like to remind the reader that these are clearly conclusions

attributed to us by Celuch-Marcysiak and Gwarek. Our own

conclusions are, of course, those in our paper [1], Nevertheless, the

five statements by Celuch-Marcysiak and Gwarek are good starting

points for a discussion. We will therefore deal with them point

by point. In their comments, Cehrch-Marcysiak and Gwarek refer

repeatedly to an equivalence theorem which is yet to be published

[2]. We are therefore not in a position to comment specifically on

statements made by the authors based on that paper. Nevertheless,

we will address the conclusions drawn by the authors regarding our

findings.

I. COMMENT ON STATEMENT 1

The FD-TD scheme described in [3] by Celuch-Marcysiak and

Gwarek uses an average procedure on the branch voltages (see

Eq. (9) in [3]). From their equivalence theorem [2] they conclude

that the operators are “nearly” identical. Although the issue of

equivalence between Yee’s scheme and 2-D TLM was not addressed

explicitly in our paper [1], we agree that, in free space, the 2-

D TLM node algorithm can indeed be made equivalent to Yee’s

algorithm (at the limit of the stability criterion) by considering the

branch current (TM-case) half-way between the nodes and taking

the branch voltages at the same location as redundant quantities,

In this case, both algorithms are equivalent. Unfortunately, this

equivalence breaks down when boundaries, interfaces and sources

(all necessary for practical modeling) are introduced. As a result,

some additional operations on the classical Yee’s scheme are needed
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to ensure mathematical equivalence with the 2-D TLM. This point has

already been explained by Johns in his reply [4]. In their paper [3],

Celuch-Marcysiak and Gwarek also mentioned on p. 202 that formal

equivalence requires the repeated space (and, in fact, time) averaging

added to the classical Yee’s scheme. The objective in [1] was to

establish new FD-TD formulations which are exactly equivalent to

the 2-D TLM shunt node and to the 3-D TLM condensed node,

respectively, for any situation and in all respects.

II. COMMENT ON STATEMENT 2

We acknowledge that different excitations will produce different

time-domain output and, therefore, different spectra. However, we

think that the statement that if the transient response is falling below

0.3% (of the maximum value, we suppose), the resonant frequency

is accurate within the same percentage after 150 iterations is not

conclusive. The truncation error that shifts the maxima corresponding

to resonant frequencies in the frequency domain must be taken

into account. Therefore, a transient response close to zero is not a

sufficient condition to ensure that the resonant frequency is obtained

with good accuracy, We would be interested in the Fourier transform

spectrum obtained by Celuch-Marcysiak and Gwarek to ascertain

their conclusion. In addition, the structure cannot, in general, be

excited in the same way when using TLM or classical Yee’s scheme.

For instance, in the TLM model the node at the center of the structure

of Fig. 6 in [1] is excited by an impulsive branch voltage and zero

currents while this cannot be done in the classical Yee’s scheme. Thk

may cause differences in the time-response but cannot entirely explain

the difference in the convergence behavior. Our hypothesis, as men-

tioned in [1], is that explicit enforcement of the energy conservation

in the new FD-TD makes the new algorithm numerically robust and

attenuates the numerical noise during simulations, especially in the

case of a relatively coarse mesh as used in our example. However,

the point raised by Celuch-Marcysiak and Gwarek is noteworthy,

and more study is needed to clearly identify the exact reasons for the

difference in convergence behavior of the schemes.

III. COMMENT ON STATEMENT 3

There is a fundamental difference between the classical Yee’s

scheme and the 2-D TLM algorithm. The former approximates

Maxwell’s equations in discrete form by using difference operators

which, inherently, enhance numerical noise. As a result, if Maxwell’s

equations implicitly satisfy the energy conservation principle, a

discrete form such as Yee’s scheme will only approximately satisfy

it. On the other hand, TLM and the new FD-TD scheme proposed

in [1] compute the new field values using a scattering process which

explicitly enforces energy conservation. The behavior of the TLM

simulation suggests that explicit enforcement of energy conservation

leads to a faster convergence. This is consistent with the well-known

use of redundancy in communications to reduce the error rate due

to noise.

IV. COMMENT ON STATEMENT 4

We still maintain that the presence of more field components allows

a more accurate description of the boundaries and excitation, We refer

again to the reply by Johns [4] along these lines.

V. COMMENT ON STATEMENT 5

It is not clear to us what claim is brought forward by Celuch-

Marcysiak and Gwarek. While we suggested in our paper [1] that

the improved convergence behavior observed in the 2-D TLM and

the new 2-D FD-TD scheme may be due to the explicit enforce-

ment of energy conservation and conservation of all tangential field

components, we never claimed that thk was the reason for the zero

dispersion along the main axes in 3-D condensed node algorithms.

Nor did we neglect to pay attention to this fundamental difference

between our two algorithms. It is simply a well-known fact which

our research group has already analyzed in great detail [5], [6].

The explanation given by Celuch-Marcysiak and Gwarek in their

comments thus stands entirely on its own merits. We have never

made any statement to the contrary.

We acknowledge the new type of 2-D TLM node (referred to as

type B) proposed by the authors, which is, as mentioned above,

a reduction of the 3-D TLM condensed node and whose origin,

surprisingly, is attributed to us by the authors. We acknowledge

the expected nondispersive character in the axial direction of the

node governed by equation (3) of their comments, but have some

reservations regarding the claim that this algorithm has the same

explicit energy conservation criterion as the 2-D TLM or FD-TD of

[1] (referred to as type A). The authors failed to notice that their

new algorithm (3) requires two time steps for updating the field

values. On the other hand, the 2-D algorithms presented in [1] state

explicitly that energy emerging from the node for new field updates

is equal to the energy that entered it at the previous time step only.

The new 2-D node which the authors are proposing is certainly worth

investigating, and it would be interesting to compare it with the 2-

D nodes presented in [1] or with Yee’s scheme. For instance, even

though no dispersion occurs in the axial direction, the node may still

exhibit some dispersion along other directions.

1.

2.

3.

[1]

VI. CONCLUSIONS

We do not agree with the classification of the various time-

domain schemes presented by Celuch-Marcysiak and Gwarek

in their conclusion. For instance, the term “expanded node”

designates, according to the generally accepted definition, a

node in which the field components are defined at different

locations within the node. The 2-D TLM shunt node and the

2-D FD-TD node type A do not belong to that catego~. All

field components are computed exactly at the same location,

which is not the case in the classical Yee’s scheme.

Celuch-Marcysiak and Gwarek point out that the algorithms of

Group A have different computer expenditures. How. then, can

they be formally equivalent?

The properties of the node proposed by Celuch-Marcysiak and

Gwarek (called type B) remains to be investigated. The new 3-D

FDTD scheme described in [1] has exactly the same properties

as the 3-D TLM condensed node whose properties, to the

contrary of the authors claim, have been thoroughly studied (see

for instance [5]–[7]). We agree that spurious mode solutions

arise in the group B nodes, but they are also present in the

algorithms of group A. These are inherent to the space and time

discretization process and have noticeable effects when active

circuits and absorbing boundaries are implemented. Again,

due to the mathematical difference of the various algorithms,

spurious modes have different prope~ies and are excited in

different ways. While some algorithms of group B require more

computer storage, their faster convergence makes their CPU

time requirement comparable. Finally, explicit enforcement of

energy conservation ensures long term numerical stability and

convergence.
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Comments on “Josephson Effect

Gain and Noise in S1S Mixers”

Daniel G. Jablonski

their recent article [1]. Wengler etd. report their observations

and conclusions concerning the effects of Josephson currents on the

microwave performance of superconductor-insulator-superconductor

tunnel junction devices. I would like to caution that the authors

seem poised to rediscover, the hard way, many lessons learned by

researchers during the 1970s concerning the use of Josephson devices.

First, Wengler et al. do not cite any references published prior to

1982. As a result, they make no mention of a considerable body of

published work relevant to their current research. In particular, there is

no indication that the authors have reviewed early work in the devel-

opment of Josephson effect mixers [2] and parametric amplifiers [3]

built using point-contact and constriction microbridge devices. Point

contacts and microbridges were popular because of the difficulties

at the time associated with making reliable tunnel junctions, now

known as S-I-S devices. Unlike S-I-S devices, point contacts and

microbridges have negligible shunt capacitance and do not generally

exhibit the quasiparticle, or photon-assisted tunneling steps exploited

by S-I-S devices. Users of point contacts and microbridges instead

relied on microwave modulation of the Josephson currents within the

devices. These currents give rise to the Shapiro steps discussed by

Wengler and his coauthors.

For the most part, it was eventually found that microwave ap-

plications of Josephson tunneling in point contacts, microbridges,

and tunnel junctions were extremely noisy, at least by cryogenic

standards. Furthermore, the application of standard microwave theory

led to some surprises, particularly with regard to the problem of

defining the noise temperature of a Josephson parametric amplifier

[4]. It turns out that the gain of such an amplifier depends on the noise

spectrum of the input signal. This makes traditional measurements of
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noise temperature inappropriate. Even though Wengler et al. are not

observing this mode of operation, it would be wise for them to review

the relevant literature, particularly with regard to a problem known

as “noise rise.” Related to this is the work of Kautz, his colleagues,

and others on chaos in Josephson junctions [5].

With respect to their work on S-I-S devices, the authors make

no mention of the work of Henneberger and myself on the effects

of Josephson currents on the performance of S-I-S devices [6]. If

nothing else, this work will make one aware of the many potential

difficulties that arise when Josephson steps and quasiparticle steps

interact in high frequency, low capacitance devices.

Finally, it should be emphasized that suppressing the Josephson

currents is not the same as eliminating the Josephson currents. Even

when external Josephson currents are suppressed with a magnetic

field, circulating Josephson currents still flow within the S-I-S device.

The

may

[1]

[2]

[3]

[4]

[5]

[6]

results of Wengler et al. suggest that these circulating currents

significantly degrade the measured signal to noise performance.
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RetJly to Comments on “Josephson

Effe;t Gain and Noise in S1S Mixers”

Michael J. Wengler

In the above paperl we should have placed our work in the context

of Josephson m-ixer work done before 1982, This omission leads to

Jablonski’s caution. I am pleased to reassure that we are in no danger

of rediscovering anything. The earlier work all used point contact

junctions with low capacitance and with nonhysteretic current-voltage

(IV) curves which fit the resistively shunted Josephson junction (RSJ)

circuit model [1], [2]. Our work uses planar S1S diodes with higher

capacitance and with completely hysteretic IV’s which are not even

similar to the RSJ model predictions.
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